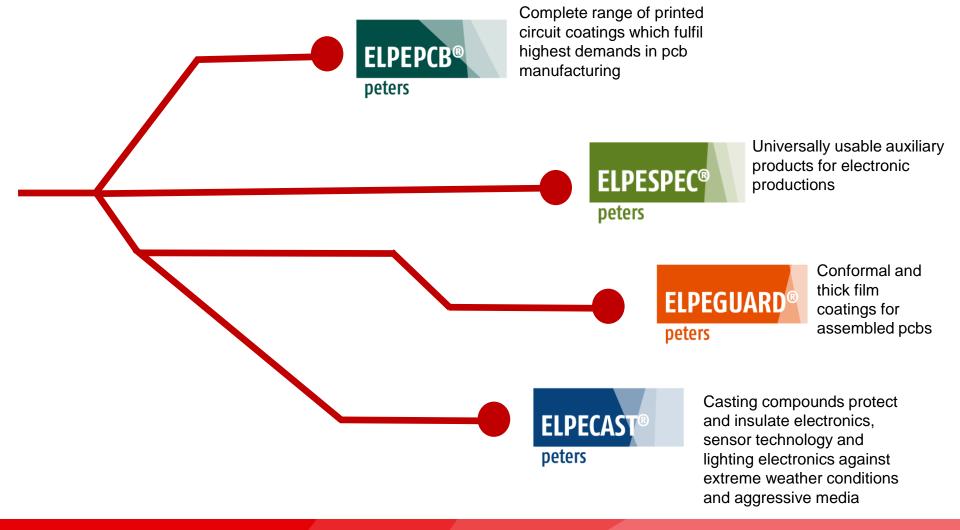


Coating Innovations for Electronics

ELPEGUARD[®] - New Big Five

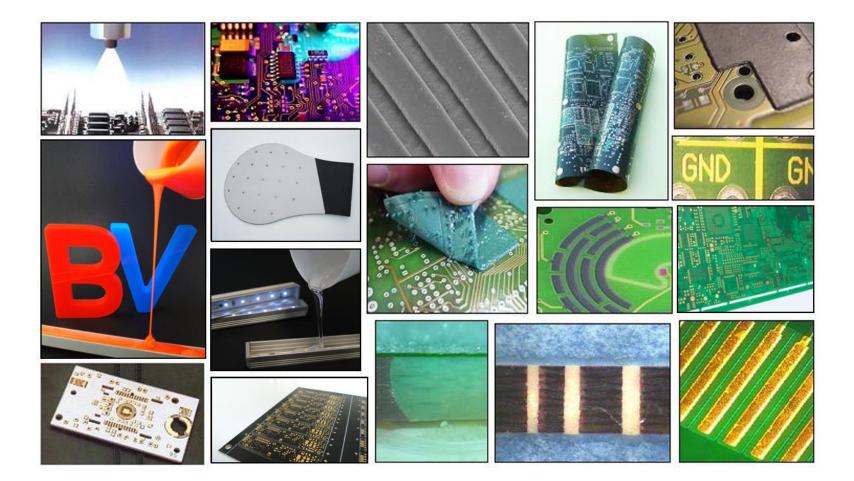
... Made in Germany

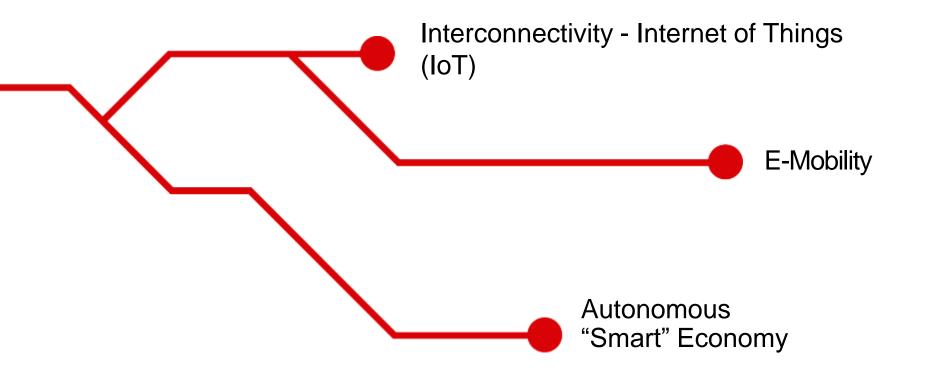
source: municipality of Kempen


Hightech from a town with tradition

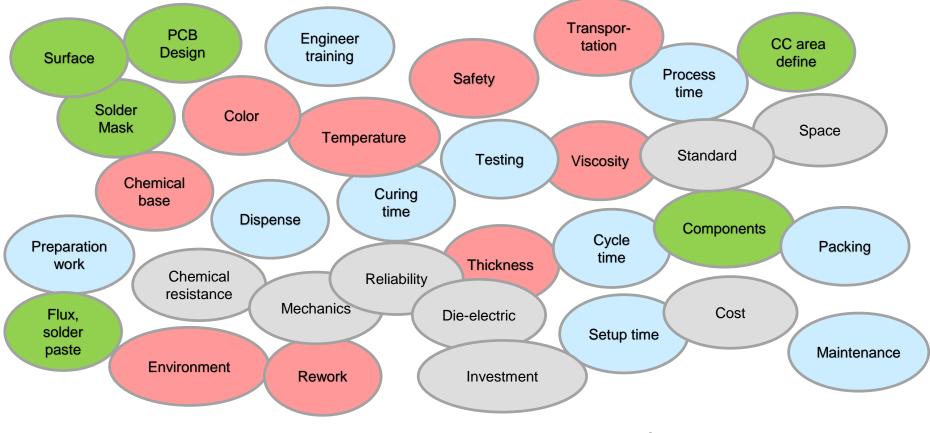
A good community!

Worldwide Unique!


ELPEGUARD[®]

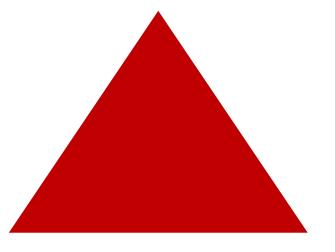


Coating Innovations for Electronics



Tech Trends & Impact on Electronics Reliability

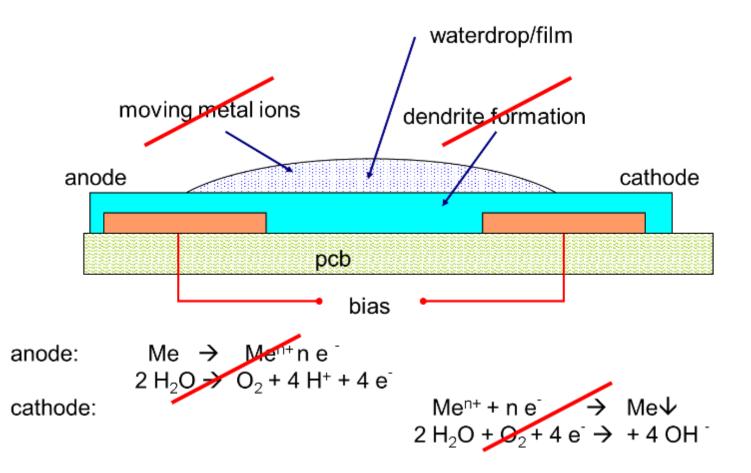
Impact on Reliability Factors?



....and many more....

The Reliability Triangle 3P's

Printed Circuit Board (PCB)



Protection Material

Process (People + Machine + Parameters)

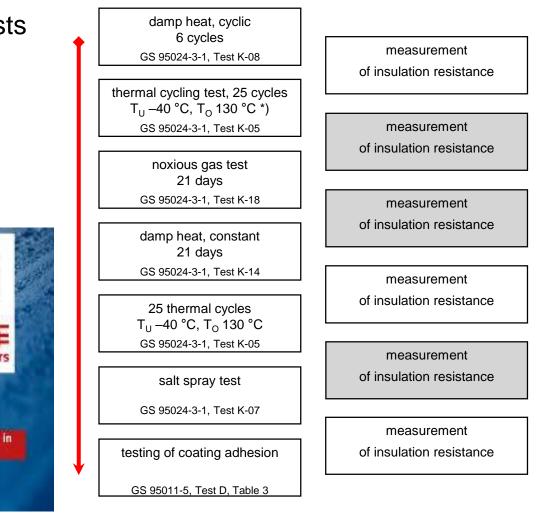
Prevention of Electrochemical Failure

Important Properties of Conformal Coatings

- Protection against humidity
 - > Adsorbed water
 - > Condensed water (dew point condensation)
 - Electrical insulation under moisture load!
 - Moisture & Surface Insulation Resistance (M&SIR/SIR in MOhm)

Current and New CC Requirements

 Automotive approval tests Environmental stress (serial)



ELPEGUARD[®]

peters

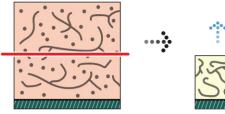
Freude am Fahren

Current and New CC Requirements

- Hyundai MS 941-04
- IPC 61086-2
- IPC 60664-2
- DIN EN 45545
- UL 746E / UL 94
- IPC-CC 830 C / MIL-I-46058 C
- ...
- • •

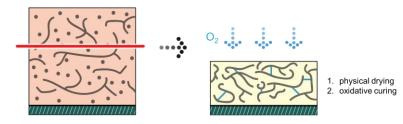
Current and New CC Requirements

• Automotive approval tests

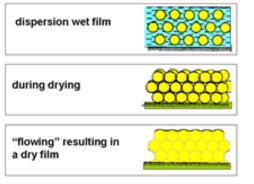

Who's Who Chinese automakers and their foreign partners		
Shanghai Auto (SAIC)	Volkswagen, General Motors	
Dongfeng Group	PSA, Nissan, Honda, Kia Motors, Renault	
Changan Group	Ford, Mazda, Mitsubishi, PSA, Suzuki	
Beijing Auto (BAIC)	Daimler, Hyundai	
Guangzhou Auto (GAC)	Toyota, Honda, Fiat Chrysler	
Jianghuai Automobile (JAC)	Volkswagen	
Zotye	Ford	
Brilliance Auto*	BMW	
FAW	Volkswagen, GM, Toyota	
Source: Bloomberg research *Note: BMW is in talks with Great Wall for sec	ond JV Bloomberg 🕮	

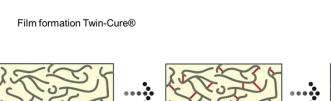
Types of Conformal Coatings

Film formation of physical drying coatings Series ELPEGUARD® SL 1307-FLZ/2

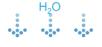


solvents


physical drying


Film formation of oxidative curing coatings Series ELPEGUARD® SL 1301 ECO-(BA)-FLZ

Stages of film formation polymer dispersions


ELPEGUARD[®] SL 1305 AQ-ECO series

1. Cross-linking reaction

2. cross-linking reaction

Humidity

ELPEGUARD[®] Conformal Coating Family "Big Five"

- Oxidative Curing ELPEGUARD[®] SL 1301 ECO-(BA)-FLZ series
- Water dilutable
 ELPEGUARD[®] SL 1305 AQ-ECO series
- Basis: Acrylics
 ELPEGUARD[®] SL 1307 FLZ/2 series
- UV curing, solvent-free ELPEGUARD[®] Twin-Cure[®] DSL 1600 E-FLZ series
- Silicones
 ELPEGUARD[®] DSL 17XX FLZ

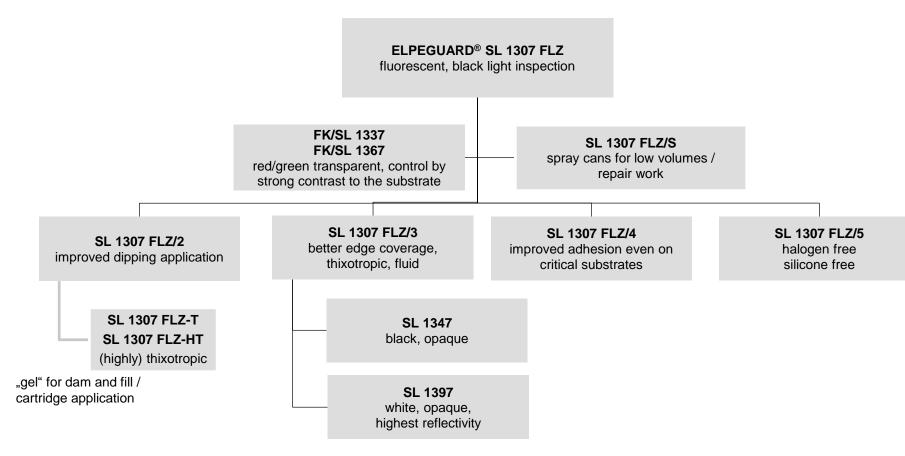
Conformal Coatings of the Future

ELPEGUARD[®]

peters

"Innovation is the only way to win." [Steve Jobs]

ELPEGUARD[®] Conformal Coating Family "Big Five" – New!


- Acrylates: ELPEGUARD® (solvent-based)
 - > ELPEGUARD[®] SL 1307 FLZ family
 - > ELPEGUARD[®] SL 1800 FLZ series
 - > ELPEGUARD[®] SL 1801 FLZ series
- UV-Technology: ELPEGUARD[®] Twin-Cure[®] UV curing (solvent free)
 - > ELPEGUARD® Twin-Cure® DSL 1600 E-FLZ series
 - > ELPEGUARD® Twin-Cure® DSL 1602 FLZ/400
 - > ELPEGUARD® Twin-Cure® DSL 1707 FLZ
- 2-Component-Technology: ELPEGUARD® 2-Component conformal coatings
 - > ELPEGUARD[®] SL 9400 FLZ
 - > ELPEGUARD[®] SL 9407 FLZ series
- Synthetic Rubber:
 - > ELPEGUARD® UTC 1507 FLZ series
- Silicones

ELPEGUARD[®]

- > ELPEGUARD[®] DSL 1705 FLZ
- > ELPEGUARD® DSL 1706 FLZ series
- > ELPEGUARD® DSL 1707 FLZ

1 of 5 - Acrylates "Allrounder" ELPEGUARD[®] SL 1307 FLZ series

1 of 5 - Acrylates "Allrounder"

ELPEGUARD[®] SL 1800 FLZ

- Basis: Acrylate
- Resin modification of ELPEGUARD[®] SL 1307 FLZ/2
- Improved low-temperature flexibility

1 of 5 - Acrylates "Allrounder" ELPEGUARD[®] SL 1800 FLZ – Current Products

• ELPEGUARD[®] SL 1800 FLZ/900

ELPEGUARD

peters

- > Viscosity approx. 900 mPas (DIN EN ISO 3219)
- > Application by spraying = higher layers can be achieved
- ELPEGUARD[®] SL 1800 FLZ/500
 - > Viscosity approx. 500 mPas (DIN EN ISO 3219)
 - > Application by spraying or monofilament = higher layers can be achieved
- ELPEGUARD[®] SL 1800 FLZ (FP 120-0518; research product)
 - > Viscosity 18 sec. 4 mm DIN 53211
 - > Application by means of film coater = thin layers => UltraThin Coating according to IPC-CC-830 C (Type UT)

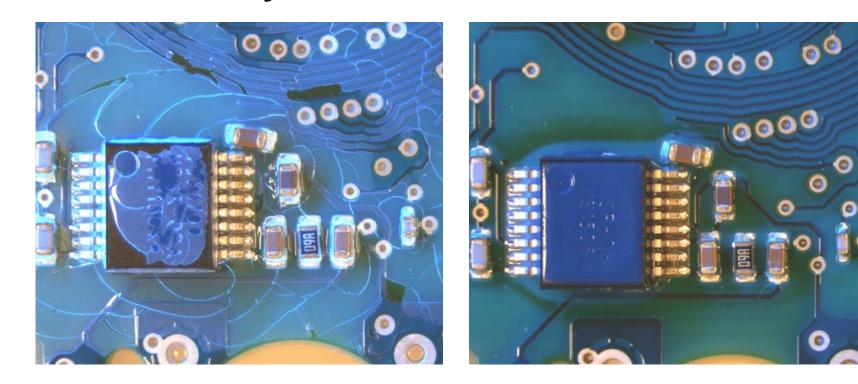
For more information please see TDS and ppt (SL 1800 FLZ klimatische tests 12082020 - engl.pptx)

1 of 5 - Acrylates "Allrounder"

ELPEGUARD[®] SL 1801 FLZ

- Basis: Acrylate
- Resin modification of ELPEGUARD[®] SL 1307 FLZ/2
- Improved low-temperature flexibility
- Contains silicone-modified components for a better wetting

peters

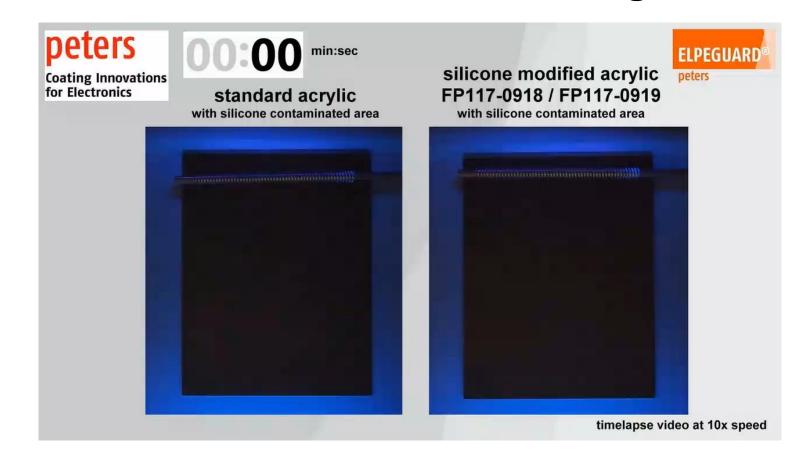

1 of 5 - Acrylates "Allrounder" ELPEGUARD[®] SL 1801 FLZ – Current Products

- ELPEGUARD[®] SL 1801 FLZ/900 ٠
 - > Viscosity approx. 900 mPas (DIN EN ISO 3219)
 - Application by spraying = higher layers can be achieved >
- ELPEGUARD[®] SL 1801 FLZ/500 •
 - Viscosity approx. 500 mPas (DIN EN ISO 3219) >
 - Application by spraying or monofilament = higher layers can be > achieved
- product for filmcoater application possible •

For more information please see TDS and ppt (SL 1800 FLZ klimatische tests 12082020 - engl.pptx)

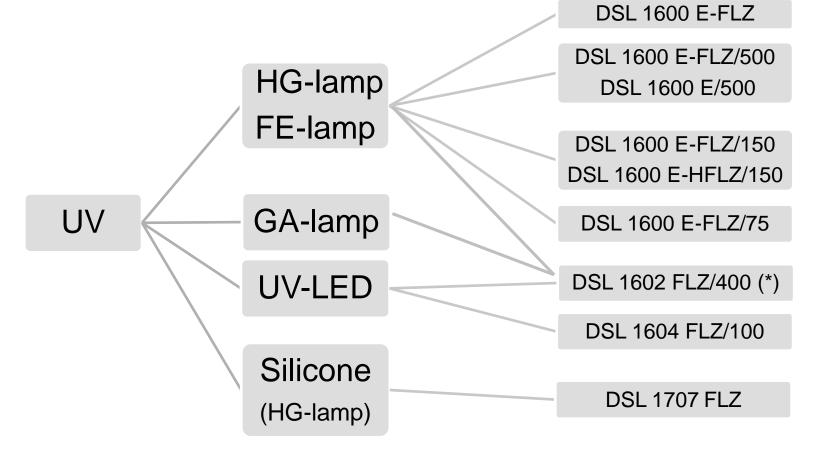
ELPEGUARD[@]

1 of 5 - Acrylates "Allrounder" - Thermal Cycle Test -1,000 Cycles -65 °C / 125 °C


Standard Acrylates (not modified)

modified Acrylates ELPEGUARD[®] SL 1800 FLZ / SL 1801 FLZ

1 of 5 - Acrylates "Allrounder" ELPEGUARD[®] SL 1801 FLZ - Wetting


1 of 5 - Acrylates "Allrounder" ELPEGUARD[®] SL 1801 FLZ - Wetting

2 of 5 – UV-Technology ELPEGUARD[®] Twin-Cure[®]

(*) For possible curing conditions see test report dsl1602flz400_comparison_LED_Hg_Ga_lamp_e.pdf

2 of 5 – UV-Technology **ELPEGUARD®** Twin-Cure® DSL 1600 E-FLZ

	Twin-Cure® DSL1600 E- current versions			
	FLZ	500	FLZ/150	FLZ/75
Insulation values				
TCT stability				
Processing				
Underdrying				
Resistance against media				
Suitable for optical appl.				

excellent green =

yellow

red

ok

- =
- with reservations =

2 of 5 - UV-Technology – IEC 60664

- ELPEGUARD[®] Twin-Cure[®] DSL 1600 E-FLZ/75 tested according to IEC 60664-3
- Test report Note 2 in our UL file

Coatings for Use on Recognized Printed Wiring Boards Guide Information

LACKWERKE PETERS GMBH & CO KG

HOOGHE WEG 13, KEMPEN 47906 DE

TWIN-CURE DSL 1600 E-FLZ/75 (Note2)

Conformal coatings "ELPEGUARD" for use on Recognized printed wiring boards, furnished as: one component liquid

Color NC	Coating Min Thk (mic) 270	CoatingMax Thk.(mic) 320	Coating Flame Class HB	Elec Temp (°C) 120	(°C) Conditions		Laminate ANSI Type FR-4.0	Laminate Min Thk (mm) 0.8
(Note2	mm trace spacing condition, 125°C	g for 0.27 mm trace wid dry heat condition, 3 de	th; lands: 0.15 mm trace gree of severity, and 10 o	to pad spacing for 0.2 day electromigration co	vision date 2016/11 for 97 n 11 mm trace width; working onditioning, Grade TWIN-CL n Ya FR-4.0 laminate FR-4-	voltage of 50 V AC RMS. T JRE DSL 1600 E-FL2/75	est conditions: Type 1	1 protection; -40°C cold
Report Date	2014-07-21							
LastRevise	d: 2018-03-30			(© 2018 UL LLC			714
IEC and IS	SO Test Methods							
Test Name		Test Method		Units		Lam/Coat Thk(mm/mic)		Value
Flammabilit	ty	IEC 60695-11-10		Class (color)		0.8/270		HB75 (NC)

E80315

ELPEGUARD[®]

2 of 5 - UV-LED-Technology

- Twin-Cure[®]:
 - > Rapidly non-adhesive, thus inline-capable
 - > Electrical properties like series ELPEGUARD[®] Twin-Cure[®] DSL 1600 E-FLZ
- Twin-Cure[®] curing mechanism:
 - > Fast LED UV curing at 395 nm
 - > Combined with moisture reaction in shadow areas
- Upon UV curing
 - > No hazardous UVC radiation
 - > **No** ozone formation

2 of 5 - UV-LED Technology

ELPEGUARD[®] Twin-Cure[®] DSL 1604 FLZ/100

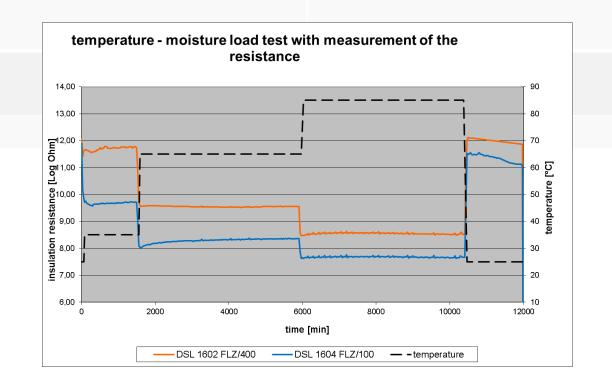
- Main customer Peters Italia
- "Exotic" product

ELPEGUARD[®] Twin-Cure[®] DSL 1602 FLZ/400

- Comparable to ELEPGUARD[®] Twin-Cure[®] DSL 1600 E-FLZ/75
- Curing with mercury-, galliumlamp and UV-LED (395nm) possible (test report available)

UV-LED Dam Material

Coming soon



2 of 5 - UV-LED Technology

ELPEGUARD[®] Twin-Cure[®] DSL 1604 FLZ/100

ELPEGUARD[®] Twin-Cure[®] DSL 1602 FLZ/400

ELPEGUARD[®]

2 of 5 - UV-LED-Technology ELPEGUARD[®] Twin-Cure[®] DSL 1602 FLZ/400

 Viscosity (DIN EN ISO 3219, 20°C) 	320 - 450 mPas
 Density (DIN EN ISO 2811-1, 20°C) 	1.04 - 1,08 g/cm ³
 Humidity/insulation resistance IPC-CC-830B, 3.7.1 (65 °C/90 % r.F.) 	passed
 Humidity/insulation resistance 85/85 Test (3 d, 85 °C, 85 % r. F.) 	≥ 3,0 x 10 ⁸ Ohm
 Resistance against condensed water following DIN EN ISO 6270- 2 (BIAS 12 V, 40 °C, 100% r. F.) 	≥ 1,0 x 10 ¹⁰ Ohm

For more information please see TDS and ppt (DSL 1602 FLZ 400 klimatische tests 29102019 – engl. pptx)

3 of 5 - 2-Component-Technology - Solvent-Based 2-Component Conformal Coatings

- Defined / stoichiometric cross-linking
- Defined and adjustable cross-linking periods (minutes to hours)
- Addition cross-linking no elimination products
- Modifications / adjustments according to particular customer requests possible

3 of 5 - 2-Component-Technology ELPEGUARD[®] SL 9400 FLZ

2-Component solvent-based Polyurethane system

•	Mixing ratio	2:1
•	Mixing viscosity (20 °C, flow time acc. to DIN 53211, 4 mm DIN flow cup)	13 ± 2 s
•	Pot life/Viscosity doubling	appr. 15 h
•	Solids content	44 ± 2 weight %
•	Humidity/insulation resistance IPC-CC-830B, 3.7.1 (65 °C/90 % r.F.)	passed
•	Humidity/insulation resistance 85/85 Test (3 d, 85 °C, 85 % r. F.)	1,0 x 10 ⁹ Ohm
•	Resistance against condensed water following DIN EN ISO 6270-2 (BIAS 12 V, 40 °C, 100% r. F.)	1,0 x 10 ¹⁰ Ohm
•	Drying	at room temperature
•	Curing	thermal (laboured)

3 of 5 - 2-Component-Technology Series ELPEGUARD[®] SL 9407 FLZ

- ELPEGUARD[®] SL 9407 FLZ/730
 - > Viscosity of mixture 670 mPas (DIN EN ISO 3219)
 - > Solid content of mixture approx. 95 %
 - > Application by spraying
- ELPEGUARD[®] SL 9407 FLZ/45
 - Viscosity of mixture 90 mPas (DIN EN ISO 3219) or 23 sec. 4mm DIN flow cup (DIN 53211)
 - > Solid content of mixture approx. 75 %
 - > Application by spraying or filmcoater
- Defined / stoichiometric cross-linking
- Defined and adjustable cross-linking times
- Addition cross-linking no decomposition products
- Modifications / adjustments to specific customer demands possible

3 of 5 - 2-Component-Technology Series ELPEGUARD[®] SL 9407 FLZ

 Solids content 	> 75 %
 Thermal cycle test -65 °C/125 °C, 1,000 cycles 	Passed incl. high layers (approx. 1 mm)
 Climatic resistances (1,000h 85°C/85%r.h.) 	> 100 MOhm
 Drying 	at room temperature
Curing	thermal (laboured)
 Passed noxious gas test 	class GX

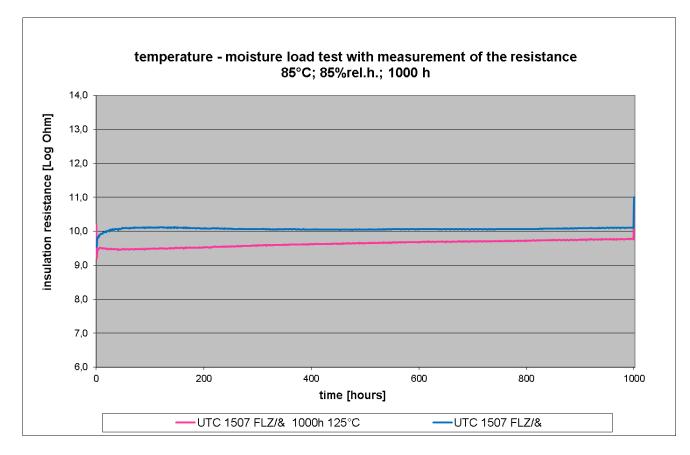
For more information please see TDS and ppt (SL 9407 FLZ Reihe klimatische tests 25092020 - engl.pptx)

4 of 5 - Synthetic Rubber ELPEGUARD[®] UTC 1507 FLZ

• Basis: Synthetic Rubber

ELPEGUARD[®]

- Solvents free from aromatics
- Excellent resistance against cracks in thermal cycle test from -65 to +150 °C
- High insulation resistance under high temperatures and high shares of humidity


4 of 5 - Thin-Film Systems Synthetic Rubber / UTC

	UTC 1507 FLZ/70	UTC 1507 FLZ/850	UTC 1507 FLZ/260
Viscosity at 20 °C (Flow time acc. to DIN EN ISO 2431, 4 mm ISO flow cup)	approx. 61 s	_	_
Viscosity at 20 °C (Flow time acc. to DIN 53211, 4 mm DIN flow cup)	approx. 23 s	—	—
Viscosity* at 20 °C, DIN EN ISO 3219	approx. 70 mPas	approx. 850 mPas	approx. 260 mPas
Solids content, DIN EN ISO 3251,% by weight	approx 11 %	approx. 18 %	approx. 15 %
Density at 20°C, DIN EN ISO 2811-1	approx. 0.80 g/cm ³	approx. 0.81 g/cm ³	0.81 g/ cm ³
Moisture and insulation resistance, IPC-CC- 830B, 3.7.1, (65 °C [149 °F]/90 % R.H.)	passed		
Moisture and insulation resistance, 85/85 test (85 °C [185 °F], 85 % RH)	≥ 1.0 x 10 ¹⁰ Ohm		
Resistance to condensation, based on DIN EN ISO 6270-2 (BIAS 12 V, 40 °C, 100% R.H.)	≥ 8.0 x 10 ⁸ Ohm		

4 of 5 - Synthetic Rubber - 1000 h 125°C, 1000h 85/85 Test

ELPEGUARD[®]

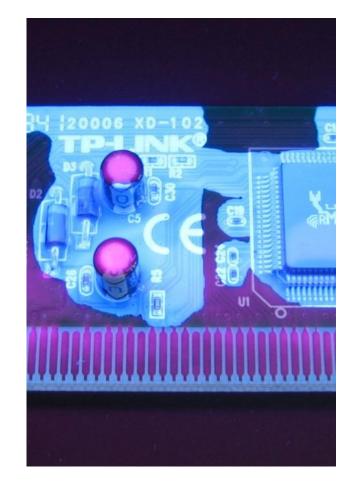
peters

For more information please see TDS and ppt (UTC 1507 FLZ klimatische tests 28092020 - engl.pptx)

5 of 5 - Silicones - Current Conformal Coating Systems

- Systems on Silicone Basis
 - > Thick-film Coating ELPEGUARD[®] DSL 1705 FLZ
 - > Thick-film Coating series ELPEGUARD[®] DSL 1706 FLZ
 - > Thick-film Coating ELPEGUARD[®] Twin-Cure[®] **DSL 1707 FLZ**

+	Excellent final properties under very high and very low temperatures	-	Possible contaminations by silicone during application/ production
+	Solvent-free, applicable in high layer thicknesses	-	Silicones are not always requested/approved
		-	Expensive


5 of 5 - Silicones and UV-Technology ELPEGUARD[®] Twin-Cure[®] DSL 1707 FLZ

- Solvent-free silicone thick-film coating
- Twin-Cure[®] curing mechanism: Fast UV curing, combined with humidity reaction in shadow areas
- Dispenser application

ELPEGUARD[©]

peters

- High thermal/thermal shock resistance
- Temperature range from -65 to +200 °C
- Excellent chemical resistance
- Approved according to UL 746E

For more information please see TDS and ppt (DSL 1707 FLZ klimatische tests 29102019 - engl.pptx)

5 of 5 - ELPEGUARD® Silicones

- Unrest in the market due to competitor's delivery problems
- Higher demand because of rising (permanent) temperature stress
- More R & D activities for
 - > UV curing systems
 - > RTV systems
 - > 2-component systems

Summary of CC for Reliable Electronics

ELPEGUARD^o

- Conformal coatings should have positive influence on reliability and durability of electronic products.
- Performance of our conformal coatings shows that the functionality of electrical assemblies is secured also under high moisture stress and temporary dewing conditions.
- It is necessary to verify compatibility of earlier processes and their residues with conformal coating in advance, taking into consideration expected stress factors.
- Only the right selection of a suitable ink system combined with an optimum processing can guarantee this.

Conformal Coatings of the Future - Conclusion

- Requirements to conformal coating systems will increase.
- Solvent-free conformal coatings will become more significant.
- UV (LED) curing conformal coatings will become more important.
- Further rising temperature stress will make silicones more relevant.
- More importance of 2-component conformal coating systems.

Coating Innovations for Electronics

Thank you for your attention.

